Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Steroids ; 205: 109393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458369

RESUMO

Diosgenin can inhibit the proliferation and cause apoptosis of various tumor cells, and its inhibitory effect on oral squamous cell carcinoma (OSCC) and its mechanism are still unclear. In this study, we predicted the targets of diosgenin for the treatment of OSCC through the database, then performed bioinformatics analysis of the targets, and further verified the effect of diosgenin on the activity of OSCC cell line HSC-3, the transcriptional profile of the targets and the molecular docking of the targets with diosgenin. The results revealed that there were 146 potential targets of diosgenin for OSCC treatment, which involved signaling pathways such as Ras, TNF, PI3K-AKT, HIF, NF-κB, and could regulate cellular activity through apoptosis, autophagy, proliferation and differentiation, inflammatory response, DNA repair, etc. Diosgenin significantly inhibited HSC-3 cell activity. The genes such as AKT1, MET1, SRC1, APP1, CCND1, MYC, PTGS2, AR, NFKB1, BIRC2, MDM2, BCL2L1, MMP2, may be important targets of its action, not only their expression was regulated by diosgenin but also their proteins had a high binding energy with diosgenin. These results suggest that diosgenin may have a therapeutic effect on OSCC through AKT1, MMP2 and other targets and multiple signaling pathways, which is of potential clinical value.


Assuntos
Carcinoma de Células Escamosas , Diosgenina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Metaloproteinase 2 da Matriz/farmacologia , Diosgenina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Org Lett ; 22(19): 7716-7720, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32969230

RESUMO

The Pd-catalyzed α-arylation of carbonyl compounds with simple arenes enabled by site-selective thianthrenation has been demonstrated. This one-pot process using thianthrenium salts as the traceless arylating reagents features mild conditions and a broad substrate scope. In addition, this protocol could also tolerate the heterocyclic carbonyl compounds and complex bioactive molecules, which is appealing for medicinal chemistry.

3.
Chem Commun (Camb) ; 56(37): 5058-5061, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32249278

RESUMO

Using thianthrene S-oxide (TTSO) as a transient mediator, para-arylation and alkenylation of mono-substituted arenes have been demonstrated via a para-selective thianthrenation/Pd-catalyzed thio-Suzuki-Miyaura coupling sequence under mild conditions. This reaction features a broad substrate scope, and functional group and heterocycle tolerance. The versatility of this approach was further demonstrated by late-stage functionalization of complex bioactive scaffolds, and direct synthesis of some pharmaceuticals, including Tetriprofen, Ibuprofen, Bifonazole, and LJ570.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...